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Abstract—The Internet of Vehicles (IoV) is a crucial technology
for Intelligent Transportation Systems (ITS) that integrates
vehicles with the Internet and other entities. The emergence of 5G
and the forthcoming 6G networks presents an enormous potential
to transform the IoV by enabling ultra-reliable, low-latency,
and high-bandwidth communications. Nevertheless, as connec-
tivity expands, cybersecurity threats have become a significant
concern. The issue has been further exacerbated by the rising
number of zero-day (0-day) attacks, which can exploit unknown
vulnerabilities and bypass existing Intrusion Detection Systems
(IDSs). In this paper, we propose Zero-X, an innovative security
framework that effectively detects both 0-day and N-day attacks.
The framework achieves this by combining deep neural networks
with Open-Set Recognition (OSR). Our approach introduces
a novel scheme that uses blockchain technology to facilitate
trusted and decentralized federated learning (FL) of the Zero-
X framework. This scheme also prioritizes privacy preservation,
enabling both CAVs and Security Operation Centers (SOCs) to
contribute their unique knowledge while protecting the privacy of
their sensitive data. To the best of our knowledge, this is the first
work to leverage OSR in combination with privacy-preserving
FL to identify both 0-day and N-day attacks in the realm of IoV.
The in-depth experiments on two recent network traffic datasets
show that the proposed framework achieved a high detection rate
while minimizing the false positive rate. Comparison with related
work showed that the Zero-X framework outperforms existing
solutions.

Index Terms—IoV, Zero-day attacks, Open-set recognition,
Federated learning, Blockchain, differential privacy, 5G, 6G,
Connected and Automated Vehicles, Security.

I. INTRODUCTION

With the rapid development of computing and communi-
cation technologies, we are witnessing a growing prevalence
of Connected and Automated Vehicles (CAVs) in our mod-
ern world. Internet of Vehicles (IoV) technology provides
a crucial communication framework for CAVs, facilitating
reliable communication between CAVs and other IoV entities,
such as infrastructure, pedestrians, and smart devices. The
fifth generation (5G) and the forthcoming sixth generation
(6G) networks promise to revolutionize the IoV by enabling
ultra-reliability with ultra-low latency and high bandwidth
communications.
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With the growing level of connectivity and complexity in
the IoV, cybersecurity risks have become a major concern.
Among these risks, Zero-day cyberattacks stand out as a
significant threat. A zero-day attack refers to a new type of
cyber attack that is unknown to both the general public and the
cybersecurity experts [1]. This kind of attack exploits unknown
vulnerabilities or uses innovative methods to evade detection
by security mechanisms. Upstream [2], a cybersecurity and
data management platform for CAVs has analyzed over 900
publicly reported cyberattacks on cars in the last decade.
Examples of real-world cyberattacks can be found in [2],
including instances where hackers could disable the brakes
and kill a car’s engine traveling at 65 mph using a laptop
and custom-written software plugged into the OBD II port.
In another case, hackers remotely controlled a Jeep’s engine
while driving on a highway. These incidents highlight the
significant cybersecurity risks associated with IoV and the
urgent need for robust cybersecurity measures to ensure the
safety of vehicle occupants and other road users.

To mitigate cyberattacks in the context of the IoV, Artificial
Intelligence (AI) has emerged as a crucial tool for cybersecu-
rity. Machine Learning (ML) and Deep Learning (DL) based
IDSs have been proposed to protect vehicular networks from
cyber-attacks [3]. In ML, classification involves assigning data
to predefined categories based on their features, using a trained
model. This model, developed with a labeled dataset, learns
to recognize patterns indicative of each class for predicting
unlabeled data. In a real IoV environment, zero-day attacks
will inevitably occur frequently. However, existing IDSs [4]–
[6] are typically designed for static and closed-set scenarios.
Assuming that all possible attack types an intrusion can belong
to are known and predefined during the training phase of the
IDS. However, this assumption is unrealistic as new types of
attacks are constantly emerging. The majority of current IDSs
rely on Supervised Learning (SL), a method that can prove
to be inefficient in effectively identifying unknown attacks
characterized by patterns substantially divergent from those
observed during the training phase.

To enable the detection of zero-day attacks, anomaly and
novelty detection techniques have been used [7]–[9]. Although
the solutions based on these techniques yield promising results
in detecting unseen/ zero-day attacks, they can unfortunately
not recognize the type of detected attacks. This poses a
substantial challenge in the development of a security mecha-
nism capable of identifying known (N-day) attacks while also
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detecting emerging zero-day (0-day) attacks.
Open-Set Recognition (OSR) [10] offers a realistic approach

in a dynamic field like intrusion detection. This method equips
models to manage both known and unexpected attack types,
considering the limitations of incomplete training data and
the possibility of encountering new attack types after training.
OSR emphasizes the need for classifiers to be both accurate
and flexible, adapting to scenarios where test samples may
include previously unseen attack types. This adaptability is
crucial for effectively responding to the continuously evolving
nature of such fields. In recent years, combining deep neural
networks with open-set recognition has led to significant
advances in detecting unknown classes in computer vision
[11]–[13]. However, this approach has yet to be fully utilized
in intrusion detection. While some studies have explored the
application of open-set recognition in this context [14], [15],
to the best of our knowledge, OSR has never been leveraged
to detect 0-day attacks in IoV.

Recent IDSs [6], [16]–[18] leveraged the potential of
Federated Leaning (FL) paradigm to train the detection model
in a distributed and privacy-preserving manner. FL enables
collaborative training of the model without requiring the trans-
mission of raw data, which enhances participants’ data privacy.
Due to centralized model aggregation, however, standard FL
is susceptible to server failures and external attacks, which
can result in inaccurate detection model updates or training
failures.

To address the limitations mentioned in existing IDSs within
the IoV environment, this paper introduces the Zero-X frame-
work. This security framework effectively identifies both 0-
day and N-day attacks by integrating deep neural networks
with Open-Set Recognition (OSR). Our approach introduces
a pioneering scheme that utilizes blockchain technology to
facilitate secure and decentralized federated training of the
Zero-X framework. The framework not only guarantees high
accuracy but also ensures fast detection, which is a critical
factor in mitigating the impact of attacks. The Zero-X frame-
work is designed to detect and classify attacks solely based on
network traffic. Its device-agnostic nature makes it suitable for
deployment on both CAVs and Multi-access Edge Computing
(MEC) infrastructure. Its purpose is to secure CAVs against
inter-vehicular attacks while protecting the MEC infrastructure
from possible attacks, including Distributed Denial of Service
(DDoS) attacks, that may originate from compromised CAVs.
In summary, the main contributions of this paper are:

• Our proposed framework uses unsupervised privacy-
preserving FL to train an attack detection (AD) model.
Specifically, we use a Deep Auto-Encoder (DAE) to
model the expected communication pattern of CAVs
and detect any deviations from this pattern as malicious
activity. This approach is highly effective in detecting
various types of attacks, as opposed to existing methods
that require separate training for each new attack.

• The Zero-X framework leverages open-set federated
learning to train the attack classifier (AC) model, a
deep multi-class data descriptor that aims to identify a
spherical decision boundary for each type of attack. This
boundary determines whether a network flow belongs to a

given attack type, making it effective in detecting unseen
attacks while accurately identifying known attacks. To the
best of our knowledge, this is the first work to leverage
OSR in combination with FL for intrusion detection in
the context of the IoV.

• We propose a new training scheme utilizing blockchain
technology to empower the federated learning, enhancing
the security and decentralization of the Zero-X frame-
work’s training process. Our contribution lies in the
introduction of an innovative Byzantine Fault Tolerance
consensus mechanism named Proof-of-Accuracy (PoA).
This mechanism plays a pivotal role in guaranteeing
the secure dissemination and aggregation of FL model
updates.

• The framework’s effectiveness is thoroughly assessed by
extensive evaluations on two recent datasets. The first
dataset, 5G-NIDD [19], comprises 5G network traffic
traces of attacks that target the infrastructure (MEC). The
second dataset, VDoS [20], contains network traffic origi-
nating from inter-vehiclar attacks. To create a realistic test
scenario, we designate one type of attack as the 0-day
attack, while the remaining attack types are considered
as N-day attacks.This process is repeated with different
0-day attacks, resulting in K test scenarios per dataset,
where K represents the number of attack types in the
dataset.

The remainder of this paper is outlined as follows. Sec-
tion II provides an overview of the related work. Section III
introduces the system design of the framework. In Section IV,
we present in detail the development and operation of the
framework. The performance evaluation results are depicted
in Section V. Finally, Section VI concludes the paper.

II. RELATED WORK

The development of IDS for IoV has gained significant
attention in recent years due to its criticality in ensuring the
security and privacy of these connected systems. A security
framework [5] is proposed for efficient cyber-attack detection
in the intravehicle networks (IVN) and External Vehicular
Networks (EVNs). To differentiate cyberattack patterns more
easily, Anbalagan et al.’s [21] IDS framework transforms vehi-
cle network data into images, enhancing attack identification.
However, both approaches rely on centralized learning, which
raises privacy concerns within the broader context of the IoV,
as data collection could potentially infringe on user privacy.

Uprety et al. [16] introduced a FL-based collaborative IDS,
enabling CAVs to train Deep Learning (DL) models on locally
labeled datasets and share model parameters with a central FL
server for global model aggregation. Similarly, Hbaieb et al.
[18] proposed an IDS for CAVs combining Software-Defined
Networking (SDN) and FL, where SDN controllers train local
models using data from CAVs, and global model aggregation
is performed on a central cloud server. Both approaches [16],
[18] rely on a central server, presenting risks as potential attack
targets and single points of failure. There is also the risk
of attackers intercepting and observing model updates during
network transmission. Differently, Boualouache et al. [6] pro-
posed an FL-based privacy-preserving IDS using multiple FL
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servers for global model aggregation. However, this solution,
along with the previous ones [16], [18], do not consider
the risk of a compromised FL client poisoning the model
during training. To address these challenges, Zero-X employs
differential privacy and blockchain technology, facilitating
decentralized and privacy-enhanced federated training of the
framework. Additionally, it incorporates a Byzantine Fault
Tolerance consensus mechanism, named Proof-of-Accuracy
(PoA), to ensure secure dissemination and aggregation of FL
model updates.

Liu et al. [17] introduced an FL-based IDS that incorporates
a blockchain-based incentive mechanism to mitigate adver-
sarial attacks. In this system, CAVs function as FL clients,
building models from their locally labeled datasets, with
Roadside Units (RSUs) aggregating the global models. How-
ever, this approach’s reliance on a simple MLP (Multi-Layer
Perceptron) network for the classification task in intrusion
detection may not be sufficiently effective in detecting new
attack patterns. To classify various attack types, Abdel-Basset
et al. [4] presented FED-IDS, a Blockchain-enabled FL IDS
utilizing a transformer network, capable of understanding the
spatial and temporal patterns of traffic flows in vehicles. How-
ever, the authors acknowledge practical challenges with their
consensus mechanism, such as divergence, limited efficiency,
and high computational demands. Lai et al. [22] introduced a
FL and Edge Cloud communication architecture (FL-EC) and
a Feature Select Transformer (FSFormer) model for robust
intrusion detection in the IoV. Yet, they recognize that this
model comes with the drawback of high computational costs.

The aforementioned FL-based IDSs operate under the as-
sumption that CAVs possess labeled datasets for FL rounds,
an assumption that might be unrealistic due to the general ab-
sence of pre-labeled malicious traffic data. Additionally, these
systems often assume an IID (Independent and Identically
Distributed) configuration for classifier training, which may
not reflect the significant imbalances in real-world training
data, a known factor adversely affecting collaborative detection
performance. Moreover, their dependence on closed-set and
supervised learning methods limits the detection of unseen
and zero-day attacks. In contrast, our framework employs a
more realistic configuration, recognizing that CAVs typically
do not have traffic labeling functions and considering the case
of non-IID training data. Additionally, Zero-X enhances attack
detection, including zero-day attacks, by integrating deep neu-
ral networks with Open-Set Recognition (OSR) capabilities.

To detect zero-day attacks in the IoV, Khan et al. [23]
introduced an IDS using state-based Bloom filters and a
bidirectional LSTM classifier for detecting cyber-attacks in
both In-Vehicle and external networks. This approach, how-
ever, necessitates a considerable number of observations for
high detection accuracy, and its detection rate for certain
attack types is lower compared to other methods. Other recent
studies [8], [24], [25] have focused on detecting zero-day
attacks in Intra-Vehicular Networks. Jeong et al. [8] utilized
autoencoders to process live streams in CAN (Controller Area
Network) message payloads. However, X-CANIDS [8] might
face limitations in effectively detecting suspension attacks,
which are typically identified by time-interval or sequence-

based IDSs. In their respective works, Agrawal et al. [24] and
Yang et al. [25] employed unsupervised learning and anomaly-
based IDS for CAN message analysis. While the approaches
[8], [23], [24] enable zero-day attack detection, they fall short
in identifying the types of N-day attacks. Their effectiveness
is further constrained by the lack of shared CAN databases
among carmakers. Moreover, their dependence on centralized
learning poses privacy concerns, where data collection could
infringe on user privacy. In contrast, Zero-X, with its OSR
detection model, enables the detection of zero-day attacks and
the identification of N-day attacks. Additionally, it respects
user privacy through federated learning, eliminating the need
for data collection.

III. SYSTEM DESIGN

This section introduces the system model, seamlessly
putting in collaboration different CAVs with SOCs. It il-
lustrates the synergy operation between them through the
Blockchain-enabled collaborative training of the Zero-X
Framework. Furthermore, an exploration of the system’s ad-
dressed threat model will also be presented.

A. System Model

Our framework enables privacy-preserving collaboration
among multiple CAVs and Security Operation Centers (SOC)
that may be owned by different stakeholders within the ITS
ecosystem, as illustrated in figure 1. To participate in the
federated training process, the SOCs deploy MEC servers on
strategically placed Base Stations (BSs). The system model is
composed of three main elements with different roles which
can be summarized as follows:

1) CAVs: are tasked with training the Attack detector (AD)
model using their own local dataset, which exclusively consists
of benign traffic, as CAVs typically lack traffic labeling
functions. When a CAV drives near a BS, it can download and
read the last block of the blockchain to get the latest global AD
model. Acting as FL workers, each CAV conducts the learning
process using its own On Board Unit. The CAV trains the
global model on its local data and adds a specific amount of
Gaussian noise to the trained parameters before sending them
back to the BS. This technique, known as differential privacy,
protects the privacy of CAV’s native data from honest-but-
curious MEC nodes.

2) MECs: play a crucial role in validating and aggregating
AD model updates that are received from CAVs. During the
training of the Attack Classifier (AC) model, each MEC is
assigned one of three roles: worker, validator, or miner. As a
worker, the MEC trains the AC model using its local dataset,
which includes labeled malicious network flows. Given that
SOCs are equipped with cyber threat intelligence tools, it is
reasonable to assume that they possess labeled samples of
malicious network traffic. As a validator, the MEC ensures the
accuracy of transactions and validates blocks that are proposed
by miners. Finally, as a miner, the MEC is responsible for
creating new blocks during the consensus process.

3) Blockchain: to ensure secure and transparent FL model
updates, the framework uses blockchain technology for AD
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Fig. 1: System design for the Zero-X framework

and AC model updates sharing and aggregation (see figure 1).
By establishing a consortium blockchain, SOCs can create a
trusted and immutable ledger to store and securely distribute
the AD and AC model updates. The decentralized nature of
the blockchain ensures that no single SOC controls the entire
network, thereby minimizing the risk of a single point of
failure or data tampering.

B. Threat Model

We consider three categories of potential cybersecurity
attacks that could target the IoV ecosystem. These include
inter-vehicle attacks, attacks against the MEC infrastructure,
and attacks against the intrusion detection mechanism itself.

• Inter-vehicular attacks: our threat model considers sce-
narios where one or colluding internal/external malicious
CAVs launch DoS/DDoS attacks affecting the availability
of the CAV and the network. For example, a colluding
malicious CAVs can perform flooding attacks against a
target CAV, aiming to overwhelming its capacity and
preventing legitimate traffic from being processed. For
comprehensive information on examples of attack sce-
narios please refer to [3].

• Attacks against the MEC infrastructure: MEC handles
sensitive and valuable data, making it a target for various
network attacks from both internal and external sources
[26]. As a crucial component of the IoV ecosystem its
security is essential for ensuring the overall security of
the IoV. Hackers could potentially create an IoV botnet
[27] by compromising a group of CAVs and using them
to launch DDoS attacks on the MEC infrastructure. Such
attacks are similar to DDoS attacks based on IoT bots.

• Attacks against the detection framework: one potential
threat against the security framework is attacks on the
framework’s detection capabilities. This could happen
during the training phase, where malicious CAVs or
compromised MECs may be selected as FL workers.
If this occurs, the attackers could attempt to undermine
the collaborative learning process by injecting malicious

updates during the global model aggregation, which is
known as a poisoning attack [28]. Additionally, attackers
may also try to infer sensitive information from the model
parameters through an inference attack [29]. Both types
of attacks can significantly compromise the accuracy and
effectiveness of the security framework.

IV. PROPOSED ZERO-X FRAMEWORK

This section details the Zero-X framework. It begins with
a presentation of the framework overview. Following this,
the flow extraction and feature engineering processes are
described. Then, the attack detection process and subsequent
attack classification phase are explained. Finally, we will
present the proposed blockchain-enabled FL scheme to ensure
secure sharing and aggregation of model updates.

A. Zero-X Overview

During the development phase, the AD and AC models are
trained independently on the network flows using a decen-
tralized FL approach, as illustrated in Figure 2. First, network
flows are extracted from collected raw network traffic, and then
a set of features is calculated for each flow. The AD model
is designed as a deep auto-encoder (DAE) trained exclusively
on benign traffic data. On the other hand, the AC model is
a deep multi-class data descriptor [30] trained on the MEC’s
local dataset, which includes labeled malicious network flows.
During the deployment phase,as illustrated in Figure 2, the
flow collector monitors incoming and outgoing packets. The
preprocessing module extracts network flows from the raw
traffic data, according to a specific Time Window (TW), and
generates a vector of features. This features vector is then
sent to the AD module, which evaluates the flow as benign
or malicious. The framework’s attack classifier module further
examines any malicious flows detected by the AD to determine
if they correspond to a new (0-day) or existing (N-day) attack.
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B. Flow extraction & features engineering
First, we use a combination of five properties from the

packet header, including the network and transport layer
headers of the TCP/IP protocol stack, to identify a traffic
flow. These include the source IP address, the destination
IP address, the source port number, and the destination port
number, as well as the protocol. For each flow extracted,
a set of features are calculated according to a given time
window (ex. 10 seconds). Flow features include mainly packet
header characteristics and statistics computed based on header
information of network and transport layers. This set of
features is then used as a features vector.

C. Attack Detector
As a CAV runs a set of well-known applications such

as those related to safety, convenience, and commercial use,
its communication pattern should exhibit a high degree of
regularity as long as it is not under attack or experiencing
any faults. Conversely, any attack on the CAV’s system would
inevitably alter its communication pattern. Hence, we use a
Deep Auto-Encoder (DAE) to model the expected communi-
cation pattern of the CAV and detect any attacks as anomalous
occurrences. The DAE model [31] is an unsupervised model
that compresses input vectors as code vectors using a set of
recognition weights and then converts back to m (m < d)
number of neurons reconstructed input vectors using a set
of generative weights. An AE architecture has two major
parts: the encoder and the decoder. The encoder reduces the
dimension of the input vectors (xi ∈ Rd) to numbers of
neurons that form the hidden layer. The activation of the
neuron i in the hidden layer is given by:

hi = f θ (x) = s(

n∑
j=1

W input
ij xj + binputi ) (1)

where x is the input vector, θ is the parameters
W input, binput, W is an encoder weight matrix of dimension

m × d, while b is a bias vector of dimension m. Thus, the
input vector is encoded to a vector with fewer dimensions.
The decoder maps the low-dimensional hidden representation
hi to the original input space Rd by the same transformation
as the encoder. The function of mapping is as follows:

xi
′ = gθ′(h) = s(

n∑
j=1

Whidden
ij hj + bhiddeni ) (2)

The set of decoder parameters is θ′(Whiddenhj + bhidden).
The objective of an autoencoder is to minimize the reconstruc-
tion error relative to θ and θ′ :

θ∗, θ
′∗ = argθ,θ′min

1

n

n∑
i=1

ε(xi, x
′

i) (3)

= argθ,θ′min
1

n

n∑
i=1

ε(xi, gθ′ (fθ(xi))) (4)

The reconstruction error is utilized as the anomaly score.
Network flows with significant reconstruction errors are re-
garded as malicious flows (anomalies). Only benign flows
are used to train the DAE model. After training, the DAE
model will reconstruct benign flows exceptionally well, but
not malicious flows that it has never seen. Algorithm 1 shows
the anomaly detection process using the reconstruction errors
of the DAE model. The threshold, α, is the mean squared
error (MSE) median, and the sample’s C times the MSE
Median Absolute Deviation (MAD) over the validation set.
MAD uses the deviation from the median, which is less likely
to be skewed by outlier values.

In Algorithm 1, the DAE training complexity is O(n×m)
(lines [1 - 2]), where n is the number of samples and m the
count of weighted connections. RE computations for datasets
(lines [3 - 4]) and median determination using a specialized
algorithm (lines [5 - 6]) have a linear complexity of O(N). The
testing phase functions g0 and fϕ (lines [7 - 9]) also operate
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Algorithm 1: Attack Detection

1 Training phase:
Input: XTr : Train dataset, XV : Validation dataset

2 ϕ, θ ← train the DAE on XTr

3 for i ∈ {1, ..., N} do
4 REV [i] =

∥∥∥x(i)
V − gθ(fϕ(x

(i)
V ))

∥∥∥
5 MAD = median(|REV [i]−median(MSEREV

)|)
6 α = median(MSEREV

)) + C ×MAD

7 Testing phase:
Input: XTe: Test dataset, α: Threshold

8 for i ∈ {1, ..., N} do
9 RE[i] =

∥∥∥x(i)
Te − gθ(fϕ(x

(i)
Te))

∥∥∥
10 if RE[i] > α then
11 x

(i)
Te is a malicious flow

12 Send DP (x
(i)
Te) to AC

13 else
14 x

(i)
Te is a benign flow

15 Store x
(i)
Te in Dk for future retraining

in O(N), independent of the dataset size, with N being the
test sample size.

D. Attack Classifier

To identify the type of the detected attack (N-day), or
eventually determine if it is an unseen or 0-day attack, we
leverage the potential of OSR through FL. In this paper, we
use deep multi-class data description method, called Deep-
MCDD [30], as it can accurately classify in-distribution (ID)
samples into known classes and detect out-of-distribution
(OOD) samples as well. This method seeks to identify, for each
class, a spherical decision boundary that determines whether a
test sample belongs to the class or not. Deep-MCDD integrates
K hypersphere-modeled one-class classifiers into a single
network. The objective of learning a single hypersphere is to
assess whether or not a test sample belongs to the target class;
hence, training it for each class is useful for recognizing OOD
samples that do not belong to any given class. Each sample
from a K-th class-conditional distribution can be considered
as an isotropic Gaussian distribution with class mean µk

and standard deviation σk within the latent space, denoted
by N (µk, σ

2
kI). Using the resulting distributions, the class-

conditional probabilities are calculated. This reflects the likeli-
hood that an input sample is drawn from each distribution, and
this probability can serve as a good confidence measure [30].
Based on the K-th class conditional distribution, the distance
function D can be defined in Equation 5:

Dk(x) ≈
∥f(x;W )− µk∥2

2σ2
k

+ log σd
k (5)

The Deep MCDD loss is defined as a Maximum A Posteriori
(MAP) loss estimation of the generative classifier as defined

in Equation 6:

(6)Loss =
1

N

N∑
i=1

log
exp(−Dyi(xi) + byi)∑k
k=1 exp(−Dk(xi) + bk)

The objective can be defined as follow:

min
W,µ,σ,b

1

N

N∑
i =1

[
Dyi(xi)−

1

ν
log

exp(−Dyi
(xi) + byi

)∑k
k=1 exp(−Dk(xi) + bk)

]
(7)

The training can be seen as minimizing the intra-class de-
viation in the embedded space. The four trainable parameters
used in the objective, that is, DNN weights (W ), class means
(µclassx ), standard deviations (σclassx ), and biases (bclassx ),
can be optimized simultaneously and effectively using mini-
batch SGD and gradient back-propagation. The confidence
score S(x) represents the distance between a test sample and
the closest class-conditional distribution in the latent space.
The CS represents the minimum value of the confidence score
calculated on the training set. If the confidence score S(x) of a
network flow x is less than CS , then it is considered an unseen/
0-day attack. Otherwise, we predict the class label of an input
sample to the class with the highest posterior probability ŷ(x).
The procedure of training and testing the attack classifier is
described in detail in Algorithm 2.

The computational complexity of the training phase in
Algorithm 2 (lines [1 - 7]) for a dataset with N samples, k
classes, and a latent space dimensionality of d is O(N×k×d).
This includes squared difference and variance normalization
operations per sample and class, as well as the cost of
propagating samples through a neural network with m to-
tal connections, adding an extra complexity of O(N × m).
Therefore, the combined complexity for the dataset stands
at O(N × (m + k × d)), prior to considering any potential
optimizations from parallel processing and GPU acceleration
that can be available in MEC infrastructure, since this model
is trained by MECs. In the testing phase (lines [9 - 15]),
each test sample is evaluated with a complexity of O(k × d)
due to distance computations for k classes in a d-dimensional
feature space. The subsequent classification involves an arg
max operation across classes with a complexity of O(k).
The total complexity for testing N samples, therefore, is
O(N × k × d).

E. Blockchain-enabled Federated Training

To ensure the secure and decentralized federated training
of both AD and AC models, we use blockchain technology.
In our framework, updates of both models are recorded on
the same blockchain, while their training is performed in-
dependently. Integrating blockchain with FL requires careful
selection of the blockchain type and consensus protocol, as
they significantly impact scalability, latency, complexity, and
cost. Public blockchains face issues like scalability limitations
and high latency. Private blockchains improve scalability and
latency but may reduce decentralization and privacy. Consor-
tium blockchains, which Zero-X employs, strike a balance,
making them well-suited for our system. Zero-X utilizes



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. X, APRIL 2024 7

Algorithm 2: Attack Classification

1 Training phase:
Input: XTr : Train dataset

2 Variables: k : number of attack classes, W :
Weights

3 f(.;W ), µk, σk, bk ← Train MCDD on XTr

4 Computing the confidence score CS :
5 for x

(i)
Tr ∈ XTr do

6 S[x
(i)
Tr] = min

k
Dk(x

(i)
Tr)

7 CS = min(S)

8 Testing phase:
Input: XTe: Test dataset, CS

9 for x ∈ XTe do
10 S(x) = min

k
Dk(x)

11 if S(x) > CS then
12 ŷ(x) = argmax

k
[−Dk(x) + bk]

13 Find the Kth closet type based on ŷ(x)
14 else
15 x is a 0-day / Unseen attack

a consortium blockchain featuring a novel Byzantine Fault
Tolerance consensus mechanism known as Proof-of-Accuracy
(PoA). This mechanism ensures secure sharing and aggrega-
tion of model updates. Our approach strategically prioritizes
scalability, latency, and security, with a slight compromise in
decentralization. We consider two types of nodes within the
blockchain network:

• Passive node: refers to CAVs that solely download and
read blocks without actively participating in the consen-
sus process.

• Active node: refers to MECs actively participating in the
consensus process. In each round, every MEC is assigned
to one of the following roles: worker, validator, and
miner. A worker participates in the FL of the AC model
and aggregates local AD model updates received from
CAVs before relaying them. A validator node checks the
correctness of transactions, and validates miner-proposed
blocks. The miner is responsible for creating a new block
during the consensus round.

The node’s identifier (ID) is its public key. This key is used
to verify the signatures of transactions or blocks created by the
device. The following outlines the process of selecting miners
and validators in each round. The role-switching policy guar-
antees that miners and validators are re-selected for each new
round, thereby minimizing the likelihood of a compromised
MEC being repeatedly assigned to a validator or a miner role.

1) Federated Training: In our framework, updates of both
models are recorded on the same blockchain. However, it is
worth noting that sharing AD model updates from CAVs to
MEC is done off-chain to enhance the scalability of the system.
This approach allows faster and more efficient communication
without overburdening the main blockchain with every AD up-
date. We assume that a reference dataset BTest containing only

benign network flows has been provided to all participating
MECs. Each CAV extracts the AD model from the blockchain,
then trains it on its local dataset. After local training, each CAV
sends the model updates to the adjacent MEC node. Since an
adversary may attempt to infer the data at the i-CAV from
its uploaded updates, we use differential privacy to enforce
privacy-preserving of local updates. After completing the local
training, a CAVi will add a specific quantity of Gaussian noise
to the trained parameters wt

i . As outlined in Algorithm 3, after
clipping the gradient wt: wt+1 ← wt+1/max(1, ||wt+1||

C ),
where C denotes the gradient norm bound, an additive noise
nt
i is added to wt. Then, the noised updates w̃t

i are sent to the
adjacent MEC node. To avoid model poising, the MEC node
will first check the AD model updates ADUp on BTest. The
model is considered to be valid when the gap between l(wt)
and l(wt−1) locates within a certain range δ.

When a MEC node is designated as a worker, it lever-
ages its local dataset to train the AC model retrieved from
the blockchain. Upon completing the training, the worker
generates two transactions: TAD, which includes the AD
model update (computed based on the aggregated updates
received from the CAVs), and TAC , which contains the AC
model’s local updates. Both transactions are signed with the
worker’s private key and transmitted to the validator nodes.
The procedure of federated training of the AD and AC models
is described in detail in Algorithm 3.

2) Proof-of-Accuracy Consensus Mechanism: In our pro-
posed blockchain framework, collaboration among MECs is
achieved through a consensus process where model updates
are shared, packaged into blocks, and validated by a group
of validators. To ensure the consensus process is efficient
and secure, we introduce a lightweight consensus mechanism
called Proof-of-Accuracy (PoA), which is inspired by the
Delegated Byzantine Fault Tolerance (dBFT) algorithm [32].
The PoA mechanism involves selecting a set of validator
nodes (delegates) based on their contributions to improving
the model’s accuracy. We assume a total of 3f +1 validators,
where f is the maximum number of validators that can be
faulty. Among these validators, one is designated as the miner.
The detailed design of the PoA mechanism is explained in the
following three steps.

a) Collecting and verifying transaction: When a valida-
tor receives a transaction, it first verifies its signature. Then, it
creates a test model MTest with the update, which it evaluates
on its local dataset (for AC transactions) or on the reference
dataset BTest (for AD transactions). Next, it calculates the
accuracy gain ACC gain of a transaction using the equation
8, with the Gj−1 representing the global model constructed
in round Rj−1. Validators exchange ACC gain values for all
transactions with each other. The final score of ACC gain
value for a given transaction is the sum of the ACC gain
values calculated by all validators. At the end of the validation
process, all validators will have the same list of transactions
with their respective ACC gain values.

ACC gain = ACC(MTest)− ACC(Gj−1) (8)
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b) Generating Blocks : The MEC assigned with the
miner’s role is responsible for creating a new block. Once
the FL process has expired, the miner collects TAD and TAC

transactions, including their corresponding ACC gain, from
the transaction pool. These transactions are then combined to
form a candidate block. The miner signs the block with its
private key, before broadcasting it to the other validators in
the network.

Algorithm 3: Federated Training

1 CAV executes:
2 Collect benign NF in dataset Lk

3 ÃD
t+1

k ← LocalUp(ADt,E, η, LK , ∆DP = True)

4 send ÃD
t+1

k to adjacent MEC node

5 MEC executes in parallel:
6 AD validation and aggregation:
7 Collect AD updates within τ in ADin

8 V ALMEC
AD ← ValUp(ADin, δ, TAD,

∆DP = True)
9 ADt+1

x ← AggUp(ADt, ADt+1
k )

10 Create a transaction: TAD{ADt+1
x ||SignMx}

11 Send TAD to Validators

12 AC Training:
13 Collect malicious NF in dataset Mx

14 ACt+1
x ← LocalUp(ACt,E, η, Mx,

∆DP = False)
15 Create a transaction: TAC{ACt+1

x ||SignMx}
16 Send TAC to Validators

17 LocalUp(wt, E, ηl, Dk, ∆DP):
18 B ← split Dk into batch of size B
19 for each local epoch i ∈ {1, ..., E} do
20 for batch b ∈ B do
21 wt+1 ← wt − ηl ▽ lk (w

t,Dk)
22 Clip the local updates:

wt+1 ← wt+1/max(1, ||wt+1||
C )

23 if ∆DP = True then
24 Add noise w̃t+1 ← wt+1 + n

(t)
i

25 ValUp(wt, δ, Dtest):
26 if |l(wt)− l(wt−1)|≤ δ then
27 Add wt to ModelV AL

28 AggrUp(wt, wt+1
k ):

29 wt+1 =
∑K

k=1
NK

N wt+1
k

c) Consensus process: Each validator examines the con-
tent of the candidate block, comparing the transactions and
ACC gain values with their own calculated values. If they
match, the candidate block is accepted, and the validator
signs the block with its private key as an endorsement. The
endorsed candidate block is then sent to the miner. Once
2/3 validators have signed the candidate block, the miner
broadcasts the block along with the collected signatures to
the other validators. Upon receiving the block from the miner,

a validator verifies the signatures and checks if the block
has enough signatures from validators to meet the required
consensus threshold (2/3 validators). If the threshold is met,
the block is considered final and is added to the blockchain.
However, if the threshold is not met, the block is discarded,
and the consensus process starts anew with a new round and
a new miner. Once the block is successfully added to the
blockchain, the validators propagate the block to other nodes
in the network, and the nodes update their local copy of the
blockchain to reflect the new block. Adding a new block
triggers a new round of federated training of the two models
(AD and AC). Model training stops when the average value
of the model’s ACC gain (calculated from the last block)
approaches 0. The top 3f+1 worker nodes with the highest
ACC˙gain in the current round will be selected as validators
for the next round. On the other hand, nodes that have
accumulated a negative ACC˙gain over a specified number
of rounds will be considered unreliable and excluded from
participating in subsequent training and consensus rounds.
This measure helps eliminate poor updates that could hinder
the convergence of the global models. Importantly, it also
protect the training process against potential model poisoning
attacks that may arise from a compromised MEC.

3) Incentive/ reward mechanisms: The SOCs participating
in the federated training are intrinsically motivated by the
advantage of having an updated IDS, which obviates the need
for supplementary incentives or reward mechanisms. However,
to promote the active engagement of CAVs in the learning
process, it is vital to establish an incentive mechanism. In this
regard, we have adopted the Stackelberg game theoretic-based
incentive mechanism proposed in our previous research [6].

V. PERFORMANCE EVALUATION

In this section, we will assess the effectiveness of the
Zero-X framework by conducting a thorough evaluation on
two recent datasets. The first dataset, 5G-NIDD [19], con-
sists of 5G network traffic traces of attacks that target the
MEC infrastructure. The second dataset, VDoS [20], contains
network traffic originating from inter-vehicle attacks. After
briefly introducing the datasets and the experimental setting,
we analyze the detection performance in detail. We also test
various time-window (TW) sizes as it directly impacts the
detection delay. Further, we will comprehensively analyze
the identification performance of N-day and 0-day attacks.
We then evaluate the performance of the blockchain system,
and present the incentive mechanism’s performance. Next,
we present a security analysis of the Zero-X framework.
Finally, we compare our approach with existing solutions in
the literature.

A. Datasets

The 5G Network-Intrusion Detection and Defense (5G-
NIDD) dataset [19] comprises data collected from a 5G testbed
connected to the 5G Test Network at the University of Oulu
in Finland. The testbed consists of two base stations, each
equipped with an attacker node and multiple benign 5G users.
The attacker nodes simulate various attack scenarios against
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the server deployed in the 5GTN Mobile Edge Computing
(MEC) environment. The dataset includes examples of Denial
of Service (DoS) attacks, such as ICMP Flood, UDP Flood,
SYN Flood, HTTP Flood, and Slowrate DoS, as well as port
scans, including SYN Scan, TCP Connect Scan, and UDP
Scan. The VDoS dataset [20], is a publicly available dataset
that contains both benign and malicious network traffic data.
The dataset was generated using a realistic testbed comprising
two vehicles, physical and virtual machines, access points,
and Cisco antennas. Three different scenarios, urban, rural,
and highway, were used to collect the network traffic data.
The dataset contains the network traces of three types of DoS
attacks: UDP Flood, SYN Flood, and Slowloris. The sample
distribution of network traffic per attack for both datasets is
presented in Table I.

B. Experimental setting

To extract flows and calculate features from raw traffic
(PCAP files), we developed some scripts using CICFlowMeter
[33], a popular flow traffic exporters. For a more comprehen-
sive understanding of the list of features and their correspond-
ing descriptions, kindly refer to [7]. We perform data pre-
processing, which includes data cleaning, data normalization,
and feature engineering. To ensure accurate results, we follow
a specific protocol for splitting the datasets. Legitimate traffic
is divided into three parts: 60% for training the AD, 20% for
AD validation, and 20% for testing. Similarly, malicious traffic
is split into 60% for training the AC, 20% for AC validation,
and 20% for testing. The dataset splitting is illustrated in Table
II. To create a realistic test scenario, we designate one type of
attack as the 0-day attack, while the remaining attack types are
classified as N-day attacks. The training set excludes samples
from the 0-day attack, and the AC is trained on N-day attacks
for classifying inputs into K − 1 attack types. The test set
comprises all samples from the 0-day attack and N-day attack
samples reserved for testing. This process is repeated with
different 0-day attacks, resulting in K scenarios per dataset.

We implemented a DAE with five hidden layers. The local
models’ weights were computed using the Stochastic Gradient
Descent (SGD) algorithm. The Mean Squared Error (MSE)
loss function was used, with a learning rate of 0.012. After
each round, the weights of the global model were calculated
using the Federated Averaging algorithm [34]. We trained and
tested the model in the Google Colab cloud environment. We
used the Pytorch package to implement the local and federated
learning models.

C. Attack detection performance

Firstly, we evaluate the accuracy of the global model
AD on the two datasets, considering the IID and Non-IID
configurations. Next, we conduct a thorough analysis of the
model’s performance using various metrics. Finally, we test
multiple levels of differential privacy to determine the optimal
balance between privacy and model performance. To obtain
a comprehensive and insightful evaluation of attack detection
performance, we consider the following metrics:

TABLE I: Dataset samples distribution

Dataset Attack Absolute count Fraction

5G-NIDD

Benign 477737 39.29%
UDPFlood 457340 37.61%
HTTPFlood 140812 11.58%
SlowrateDoS 73124 6.01%
TCPConScan 20052 1.65%
SYNScan 20043 1.65%
UDPScan 15906 1.31%
SYNFlood 9721 0.80%
ICMPFlood 1155 0.09%

VDoS

Benign 101615 42.06%
UdpFlood 68953 28.54%
SynFlood 62354 25.81%
Slowloris 8689 3.60%

TABLE II: Dataset splitting

Samples Train AD Val AD Train AC Val AC Test

Benign 60% 20% - - 20%
N-day - - 60% 20% 20%
0-day - - - - 100%

• Precision: the ratio of classified malicious flows that are
truly malicious:

Precision =
TP

TP + FP
(9)

• Accuracy: the ratio of correctly predicted malicious sam-
ples to the total samples:

Accuracy =
TP + TN

TP + FN + FP + TN
(10)

• TPR: measures the proportion of benign flows that are
incorrectly classified as malicious by the model:

TPR =
TP

TP + FN
(11)

• FPR: measures the effectiveness of the model in incor-
rectly recognizing normal flow as an anomaly:

FPR =
FP

FP + TN
(12)

• F1-Score: is the harmonic average of the precision and
recall:

F1 Score =
2 ∗ (TPR ∗ Precision)

(TPR+ Precision)
(13)

• AUROC : measures how effective the model is in distin-
guishing between normal and malicious flows:

AUROC =

∫ 1

0

TPR(FPR) dFPR (14)

TP, TN, FP, and FN denote true positive, true negative, false
positive, and false negative, respectively.

Figure 3 illustrates the AD loss function over the number of
federated learning rounds, which typically exhibits a decreas-
ing trend as the model is trained with more data. Although
slight fluctuations may be observed, the function stabilizes for
both datasets and with both IID and Non-IID configurations.
After the 10th round, we observe minor improvements in
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Fig. 4: AD performance versus the number of CAVs: Accuracy and F1-score analysis

TABLE III: Detection performance

Dataset Dist Accuracy Precision TPR F1-Score

5G-NIDD IID 92.27 95.51 93.05 94.26
Non-IID 92.43 94.63 94.26 94.44

VDoS IID 97.75 97.68 98.61 98.17
Non-IID 97.61 97.07 97.75 97.63

the model’s accuracy. The results as shown in Table III
are quite promising. They suggest that the model exhibits
strong and consistent performance across both datasets and
data distribution scenarios. The minor differences observed
between the IID and Non-IID conditions indicate that the
model is resilient and maintains its robustness, even when
faced with different data distributions.

We tested different configurations by varying the number
of CAVs per FL round. Figure 4 illustrates that an increasing
number of CAVs tends to slightly decrease the accuracy and
F1-score, particularly for the Non-IID distribution. This could
be due to the data becoming more diverse as more CAVs
are involved, making it more challenging for the model to
find a global optimum. As expected, the results consistently
demonstrate that the IID distribution outperforms the Non-IID
distribution in terms of accuracy and F1-score, regardless of
the number of CAVs.

According to the results presented in Table IV, the AD
model exhibited a high detection rate and a low false positive
rate. This indicates that the model effectively distinguished

between benign and malicious network traffic in both config-
urations (IID and Non-IID). Table IV further demonstrates the
impact of differential privacy level on the performance of the
AD model. The differential privacy level is varied by changing
the epsilon (ϵ) value, which controls the amount of noise added
to the model updates. As the differential privacy level increases
(i.e., epsilon decreases), the precision, accuracy, TPR, F1-
score, and ROC all tend to decrease. This is expected because
increasing the amount of noise added to the model update will
make it more difficult for the model to detect malicious traffic
accurately. By setting the value of ϵ to 1, DP only slightly
impacts system performance. For the IID configuration, we
observe a degradation of 0.24% in AUROC, while for the Non-
IID configuration, we observe a degradation of 0.07%. It is
worth noting that even with the most challenging configuration
- Non-IID with a high noise level (epsilon=0.01) - the model
still achieves an accuracy higher than 92% and a precision
of 97%. The fact that DP has a relatively small effect on the
model’s performance can be attributed to the fact that detection
also depends on the threshold α. Even if the addition of noise
increases the loss of the model, the threshold will still be
calculated based on the new loss and remain slightly affected.

D. Detection delay

The time-window (TW) size is a critical parameter that
has a direct impact on detection delay. While a smaller
TW can reduce detection delay, it may not capture certain
traffic properties that require a longer time interval to become
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TABLE IV: Detection performance with DP

Distribution DP Accuracy Precision TPR FPR F1-Score AUROC

IID

No-DP 97.68% 97.75% 98.61% 3.92% 98.17% 97.34%
(ϵ = 1.0) 97.55% 97.37% 98.80% 4.61% 98.08% 97.10%
(ϵ = 0.1) 95.30% 96.92% 95.62% 5.25% 96.12% 95.19%
(ϵ = 0.01) 94.90% 96.98% 94.93% 5.15% 95.76% 94.89%

Non-IID

No-DP 97.07% 97.61% 97.75% 4.11% 97.63% 96.82%
(ϵ = 1.0) 96.84% 97.92% 97.07% 3.57% 97.42% 96.75%
(ϵ = 0.1) 95.40% 96.89% 95.79% 5.28% 96.24% 95.26%
(ϵ = 0.01) 92.63% 97.41% 90.79% 4.20% 93.74% 93.29%

TABLE V: N-Day Attack identification

Dataset Attack Precision TPR FPR F1-Score

5G-NIDD

IID Non-IID IID Non-IID IID Non-IID IID Non-IID

HTTP Flood 100.00% 99.93% 100.00% 100.00% 0.00% 0.02% 100.00% 99.96%
UDP Flood 100.00% 100.00% 100.00% 100.00% 0.00% 0.00% 100.00% 100.00%
SYN Flood 99.50% 100.00% 100.00% 100.00% 0.01% 0.00% 99.74% 100.00%
ICMP Flood 100.00% 100.00% 100.00% 100.00% 0.00% 0.00% 100.00% 100.00%
SlowrateDoS 97.01% 98.76% 97.95% 95.21% 0.34% 0.43% 97.46% 96.90%
UDP Scan 99.69% 99.41% 100.00% 100.00% 0.01% 0.02% 99.84% 99.70%
TCP Connect Scan 99.74% 92.24% 99.21% 99.22% 0.01% 0.26% 99.46% 95.49%
SYN Scan 99.75% 100.00% 99.75% 99.50% 0.00% 0.00% 99.87% 99.75%

VDoS
SYN Flood 99.99% 100.00% 100.00% 100.00% 0.06% 0.00% 100.00% 100.00%
Slowloris 100.00% 100.00% 99.94% 99.94% 0.00% 0.00% 99.97% 99.97%
UDP Flood 100.00% 100.00% 100.00% 100.00% 0.00% 0.00% 100.00% 100.00%
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Fig. 5: The impact of TW size on the detection accuracy

detectable. Therefore, we conducted experimental tests using
multiple TW sizes to determine the optimal one.

The results presented in Figure 5 reveal a correlation be-
tween the TW and the accuracy and F1-score of the AD model.
Specifically, as the TW decreases, both performance metrics
deteriorate. The default window size, which corresponds to
the flow lifetime, yields the highest accuracy and F1-score.
However, if a smaller window size is desired, the 10-second
window remains the best option as it still maintains a high level
of accuracy and F1-score. The 1-second window, on the other
hand, performs the poorest among the tested windows, with an
accuracy of 83.16% and an F1-score of 88.15%. Nevertheless,
it still provides satisfactory detection capabilities. Ultimately,
the choice of TW will depend on the desired level of security
when deploying the framework, including considerations such
as the tolerance for false negatives and the acceptable detection
delay.

E. Attack identification performance

The framework’s attack classifier module further examines
any malicious flows detected by the AD to determine if they
correspond to a new (0-day) or existing (N-day) attack. We
evaluate the accuracy of the global AC model on the two
datasets, considering both IID and non-IID configurations. Ad-
ditionally, we conduct a comprehensive analysis of the model’s
performance in detecting both N-day and 0-day attacks.

1) N-day attack identification performances: Overall, the
AC model successfully detects various types of attacks, even
when confronted with different data distributions, as illustrated
in Table V. For the 5G-NIDD dataset, the AC model achieved
high performance, with precision and TPR scores of 100%
in most cases. The FPR was also low, indicating that the
model did not classify benign traffic as malicious. However,
for SlowrateDoS and TCPConnectScan attacks with Non-IID
data distribution, the F1-score was slightly lower compared to
other cases. The slow nature of traffic makes it challenging
to detect the Slowrate DoS attack, which differs from other
DoS attacks in terms of speed and packet volume sent. In
a TCPConnectScan attack, the three-way handshake process
is successfully established, mimicking a legitimate connection
and making the attack challenging to detect. However, it is
worth noting that the detection rate for this type of attacks
remains very high, with a detection rate of over 95%. For the
VDoS dataset, the AC model achieved a perfect score in all
cases with both IID and Non-IID data distributions.

2) 0-day attack identification performances: As previously
mentioned, to create a realistic testing scenario, we designate
one type of attack as the ’0-day’ attack, while classifying the
remaining attack types as ’N-day’ attacks. For each dataset, we
repeat this process with different 0-day attacks, resulting in K
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TABLE VI: 0-Day Attack identification

Dataset Attack Dist TNR85 AUROC Accuracy

5G-NIDD

HTTPFlood IID 82.65% 89.86% 88.51%
Non-IID 79.84% 90.91% 90.92%

UDPFlood IID 79.90% 87.21% 85.64%
Non-IID 66.56% 76.32% 77.50%

SYNFlood IID 90.88% 90.42% 91.53%
Non-IID 96.21% 95.49% 93.30%

ICMPFlood IID 100.00% 100.00% 100.00%
Non-IID 100.00% 92.32% 96.12%

SlowrateDoS IID 1.67% 11.57% 50.62%
Non-IID 0.06% 0.05% 50.00%

UDPScan IID 98.56% 98.53% 96.77%
N-IID 100.00% 99.32% 97.94%

TCPConnectScan IID 100.00% 99.24% 99.41%
Non-IID 99.95% 96.23% 98.03%

SYNScan IID 99.95% 98.51% 97.19%
Non-IID 93.20% 96.89% 93.73%

VDoS

SYNFlood IID 99.18% 99.31% 98.65%
Non-IID 99.43% 99.66% 99.50%

Slowloris IID 88.04% 93.12% 93.43%
Non-IID 87.29% 90.67% 93.48%

UDPFlood IID 27.10% 55.68% 61.79%
Non-IID 44.51% 71.39% 71.61%
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Fig. 6: Performance of the blockchain system

scenarios per dataset. To evaluate our model’s performance,
we use standard metrics such as accuracy and AUROC.
Additionally, we use the true negative rate (TNR) at 85% true
positive rate (TPR), denoted as TNR85, a performance metric
commonly used for out-of-distribution (OOD) detection [30].

TABLE VII: The detailed results of the blockchain system
evaluation

The number of MEC nodes
40 70 100 120 160

Nb. transactions per block 8 14 20 26 32
Consensus time (s) 0.0079 0.0797 0.494 1.518 3.632
Message Overhead 24 84 180 312 480

Overall, the model’s performance is quite satisfactory. The
results in Table VI indicate that the effectiveness of the AC
model can vary depending on the type of attack. However,
it can identify most attacks with a high level of accuracy.
Specifically, in the 5G-NIDD dataset, the model accurately
detected 7 out of 8 attacks with an accuracy exceeding 85%.
Moreover, in the VDoS dataset, the model accurately detected
2 out of 3 attacks with an accuracy exceeding 93%. It can
be observed that the model has superior performance against
scan-type attacks.

The model’s limited accuracy in identifying Slowrate DoS
attacks can be attributed to its resemblance to HTTP flood at-
tack, which makes distinguishing between the two challenging.
It is crucial to note that closed-set supervised methods have
also yielded similar misclassifications between HTTP flood
and Slowrate DoS attack flows [19]. Despite the differences
between the two attacks regarding speed and packet volume,
they exhibit some similarities. In HTTP Flood attacks, a mas-
sive influx of HTTP requests overwhelms the server, whereas
in Slowloris (first scenario of slowrate DoS [19]) attack, the
attacker maintains multiple connections for extended periods,
leading to resource depletion on the server.

The results of our experiment indicate that, on average,
the detection rate for 60% of attacks is 4.09% better in
the IID setting than in the Non-IID setting. In addition, the
accuracy and AUROC are 3.5% and 6.94% better, respectively,
in the IID setting. However, the TNR for ICMP flood and
TCPConnectScan attacks are similar in both IID and Non-
IID settings. Interestingly, the Non-IID setting outperforms the
IID setting in the case of SYNFlood and UDPScan attacks.
Overall, the AC model demonstrates promising performance
in both Non-IID and IID settings. The Non-IID configuration
is more challenging but, simultaneously, more representative
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Fig. 7: Impact analysis of model poisoning attack on Zero-X Accuracy

of the real-world scenario where participating MECs (SOCs)
may not have the same distribution of attack samples.

F. Blockchain system’s performance

This section evaluates the performance of the blockchain
system proposed for sharing model updates. In this experi-
ment, we consider implementing this framework in Luxem-
bourg as a case study. To comprehensively assess the system’s
performance, we plan to deploy a certain number of MEC
servers, ranging from 40 to 160, at key base stations across
each of Luxembourg’s 12 administrative cantons. Considering
the nature of our consortium blockchain, which is comprised
of MEC nodes, the experiment includes varying the number
of these nodes to examine scalability. We have configured the
number of validators to be 10% of the MEC nodes, while
ensuring compliance with the PoA requirement of having
3f + 1 validators, where f signifies the maximum number
of potentially faulty MECs.

This evaluation was conducted on a machine equipped
with a CPU (Intel i9 2.6 GHz) and 32 GB of RAM. The
performance of the blockchain system is illustrated in Figure 6,
which displays metrics such as the message overhead, the
number of transactions per block, and the consensus time. As
anticipated, an increase in the number of MEC nodes leads
to a corresponding rise in message overhead, the number of
transactions per block, and consensus time, as observed in
Figure 6. It is important to note, however, that despite these in-
creases, both the consensus time and message overhead (shown
in Figures 6c and 6a, respectively) continue to remain within
reasonable limits. The architecture of the system demonstrates
its ability to scale, as shown by the moderate increase in
consensus time, even when the number of nodes quadruples.
From Figure 6c, we can see that deploying 10 MEC nodes in
each canton keeps the consensus time below 2 seconds, with
transaction counts steady at 26, and message overhead stable
at 180. Table VII presents a detailed overview of blockchain
performance.

Since CAVs operate as passive nodes, their increasing
numbers do not influence the transaction volume per block
due to the MEC nodes’ role in aggregating AD model updates
from the CAVs. Consequently, the addition of CAVs also does
not impact consensus time, as they are not participants in the
consensus mechanism. Given that each MEC is capable of
serving an average of 500 participating CAVs, our system is
projected to sustain its performance levels even with a network

comprising approximately 120 MECs and 60,000 CAVs. The
system’s design ensures that the expansion in node count does
not detract from blockchain performance, which affirms the
system’s scalability.

The robustness tests on the PoA mechanism under com-
promised MEC nodes reveal its effectiveness against poison-
ing attacks on the AC model. Figures 7a and 7b compare
model accuracy without and with 30% compromised work-
ers, demonstrating a convergence failure without PoA. Upon
enabling PoA, configured such that workers accumulating a
negative ACC gain over two consecutive rounds are deemed
unreliable and thus excluded from further training and consen-
sus participation, the resilience of the system is evident. Figure
7c depicts the accuracy after enabling PoA, which confirms
that our system effectively filtered out malicious nodes while
maintaining performance nearly identical to that in a scenario
free from such workers. Even with an increased presence
of malicious workers to 50%, Figure 7d shows the model
still converges with comparable accuracy. We can, therefore,
conclude that the solution is both effective and robust, even
when faced with a model poisoning attack involving multiple
nodes.

G. Security Analysis

This section provides a comprehensive security analysis
of our proposed framework, addressing the mitigation of
three critical threat vectors (discussed in section III-B): Inter-
vehicular attacks, attacks targeting MEC infrastructure, and
adversarial attacks against the Zero-X framework.

• Inter-Vehicular and MEC Infrastructure attacks: Single or
multiple colluding malicious CAVs can launch flooding
attacks on a target CAV, a scenario known as Inter-
Vehicular Attacks. These attacks impair the target CAV’s
ability to process legitimate traffic. For a greater impact,
these malicious CAVs, including compromised CAVs part
of an IoV botnet, may also target the MEC infrastructure.
In this case, the CAVs begin their attack by scanning
the MEC server, followed by executing flood-type DDoS
attacks through open ports. For both these attack vec-
tors, Zero-X’s ’Attack Detector’ plays a pivotal role.
It employs reconstruction error as an anomaly score to
identify malicious traffic flows, whether in inter-CAV
communications or targeting the MEC system. Our study
conducted tests on three types of DoS attacks in inter-
vehicular scenarios and five types in the context of MEC
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Fig. 8: Comparative Performance Analysis of Zero-X with Related Works

infrastructure, in both N-day and 0-day scenarios. The
effectiveness of Zero-X is consistently demonstrated in
these tests, as shown in Tables V and VI. These results
substantiate our hypothesis that both inter-vehicular and
MEC-targeted attacks by compromised CAVs can be
detected through distinct traffic pattern disruptions. Once
identified, packets from malicious CAVs are systemati-
cally rejected, ensuring the integrity and security of the
IoV network.

• Poisoning attack: To secure the training of the AD and
AC global models against poisoning by malicious CAVs
or MECs uploading substandard model parameters (see
[28]), our framework incorporates a model validation
mechanism that focuses on model accuracy gain. The
process starts with the MEC node examining the AD
model updates (ADUp) against the test batch BTest.
A model update is deemed valid only if the difference
in loss function values between l(wt) and l(wt−1) re-
mains within a predefined threshold δ (detailed in sec-
tion IV-E2). Updates failing to satisfy this criterion are
discarded. For the AC model’s integrity, the framework
employs a PoA consensus mechanism. It systematically
excludes MEC nodes demonstrating a consistent negative
ACC˙gain over several rounds from future training and
consensus activities. This proactive approach effectively
prevents model poisoning that could stem from a compro-
mised MEC node. Additionally, the PoA’s role-switching
policy ensures periodic re-selection of validators for
each training round, significantly reducing the risk of a
compromised MEC node being repeatedly chosen as a
validator.

• Inference attack: An adversary might attempt to infer
raw data from a i-CAV using its uploaded weight and
gradient information [29] . To preserve privacy, Zero-X
implements differential privacy in local updates. Upon
completing local training, CAVi adds Gaussian noise
to the trained parameters wt

i . The gradient wt is then
clipped: wt+1 ← wt+1/max(1, ||wt+1||

C ), where C is the
gradient norm bound. Subsequently, additive noise nt

i is
incorporated into wt. The resulting noised updates w̃it

are then transmitted to the adjacent MEC node.

H. Discussion and comparison

In the current state-of-the-art, only a few studies [7], [23]–
[25] have addressed the detection of zero-day attacks in
the IoV. Agrawal et al. [24] primarily focused on intra-
vehicular networks, whereas Khan et al. [23], [25] extended
their research to both intra and inter-vehicular networks. Only
Yang et al. [25] conducted experiments specifically focused
on zero-day scenarios. We conducted a comparative analysis
with their work using the CIC-IDS-2017 dataset [37]. As
demonstrated in Figure 8a, the performance difference be-
tween MTH-IDS and Zero-X in detecting N-Day attacks is
relatively small, with MTH-IDS achieving a 99.8% detection
rate, compared to 93.39% for Zero-X. In the context of 0-Day
attacks, however, Zero-X significantly outperforms MTH-IDS,
achieving a 98.36% detection rate versus 75.943% for MTH-
IDS. Notably, MTH-IDS employs centralized learning, which
raises privacy concerns in the IoV due to the necessity of
data centralization. We further compared Zero-X with three
recent studies that utilized the same datasets [19], [20] as
those used in our experimentation. Figure 8b shows Zero-
X outperforming Schan et al.’s method [19] in DDoS attack
detection, except for SlowrateDoS. As demonstrated in Figure
8c, Zero-X also excels in detecting Scan-type attacks. Figure
8d reveals Zero-X’s superiority over Rahal et al. [20] and
[7] in inter-vehicular attack detection. Zero-X addresses the
limitations of [20]’s inability to detect zero-day attacks and
[7]’s inability to recognize N-day attacks.

The practicality and real-world potential of the Zero-X
framework are demonstrated through evaluations conducted on
both a realistic vehicular traffic testbed [20] and real traffic
attacks on MEC infrastructure [19]. Both datasets contain
diverse attacks mainly categorized as DoS and Scan. Their
similar characteristics lead to resembling network behaviors,
complicating the detection of zero-day attacks. These new pat-
terns may mimic known attacks, challenging the classification
model’s ability to differentiate them. Table VIII compares the
features of the Zero-X framework with other recent studies in
various key aspects. Notably, Zero-X stands out by effectively
detecting 0-day and recognizing N-day attacks, a capability
shared with MTH-IDS [25]. However, it goes further by
prioritizing data privacy through federated learning. Addition-
ally, Zero-X leverages blockchain technology to decentralize
and distribute the coordination of federated training. This not
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TABLE VIII: Comparison between Zero-X and other related works

Features [7] [19] [4] [20] [35] [36] [6] [24] [8] [25] Zero-X

0-day detection ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓
N-day identificatin ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✓
Federated learning ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✓
IID ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✓
Non-IID ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓
Decentralized Training ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✓
Fault tolerance ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✓
Privacy preserving ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓
Real vehicular data ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✓
5G network traces ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✓

only enhances robustness against adversarial attacks but also
minimizes the risks associated with single points of failure and
potential data tampering.

VI. CONCLUSION

This paper proposed Zero-X, a novel security framework
designed to detect both 0-day and N-day attacks in the realm
of the IoV. The framework uses a blockchain-enabled federated
training approach to build detection and identification models
that enable secure collaboration and trust between CAV and
MEC nodes. We empirically evaluate the proposed framework
and compare its performance with existing IDS using recent
publicly available datasets. The results show that the Zero-
X framework outperforms existing IDS, demonstrating its
superiority in detecting a wide range of cyberattacks. For our
future work, we plan to develop a security framework with
the ability to detect zero-day attacks, as well as evolve its
detection capabilities. This system will incrementally update
the detection model to convert newly discovered ”unknown”
attacks into ”known” attacks. Another direction to extend this
work is to integrate an intrusion response mechanism where
multiple reinforcement learning agents are running on a set of
vehicular edge nodes and learn to mitigate newly discovered
attacks.
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